Growing Asset Stress

Increased Variable Generation

More Dynamic Markets

New Controllable Assets

Increased Activity at the Grid Edge

Massive Data & Computational Advances

New operating paradigms Lower system inertia Aging infrastructure Fewer power engineers

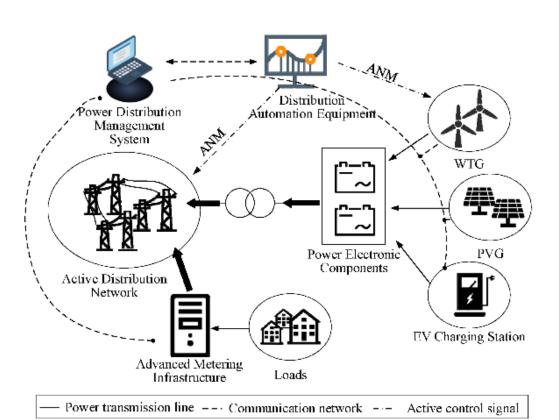
More dynamic behavior More stochastic Multi-level coordination

Broader markets & more services
Greater complexity
More frequent clearing

Demand response Energy storage / electric vehicles Dynamic T&D assets

Load growth
Distributed energy
resources
Internet of (energy)
things

Al & machine learning New control paradigms Fast computation Cloud computing Probabilistic methods


Thesis

The next-generation power grid will be an information network as much as it is an energy network.

Vision

Data and information essential to reliable, resilient grid operations are delivered accurately to the right place, at the right time, without interference.

Different applications require different comms solutions.

Communications requirements

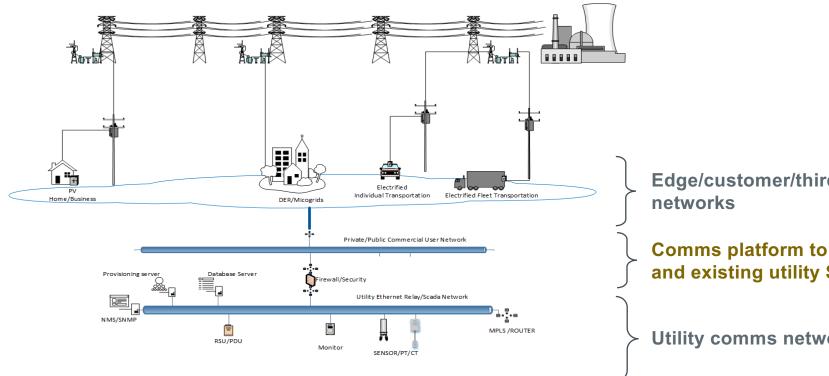
- No one size fits all.
- Future-focused.
- Not ad-hoc; designed in from the beginning.
- Requirements → architecture.

Key challenges

Grid ←→ Comms Interdependencies

- DER use cases
- Restoration use cases
- Challenge: Prioritization & coordination

Grid Edge Integration


- Rapid transformation at the edge
- Challenge: Operational coordination & orchestration

Secure Communications Interoperability

- Heterogeneous industry & regulatory landscape
- Disparate technology generations
- Challenge: End-to-end information security

The key challenge: edge-distribution interface

Edge/customer/third-party

Comms platform to integrate DER info and existing utility SCADA systems

Utility comms networks