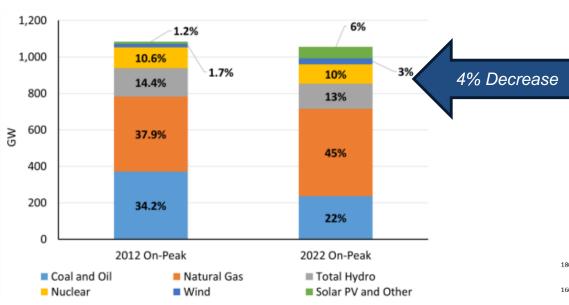
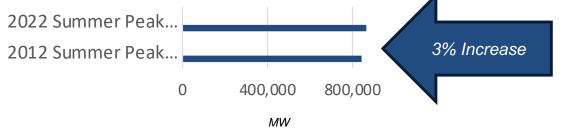

Reliably Managing the Energy Transition in North America

A Bulk Power System Reliability Perspective

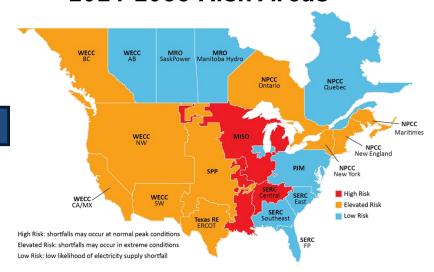
John Moura NASEO September 30, 2024 – New York City

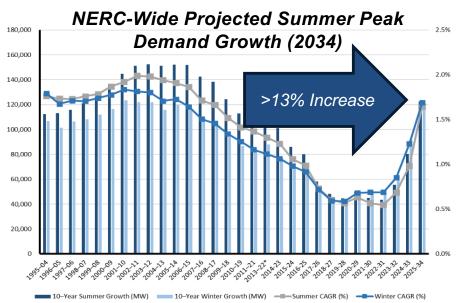
RELIABILITY | RESILIENCE | SECURITY





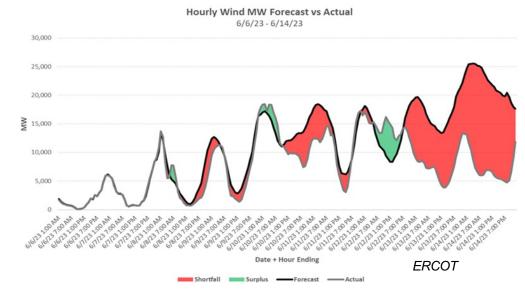
Across an Interconnected System: Less Resources Means More Reliance on Neighbors

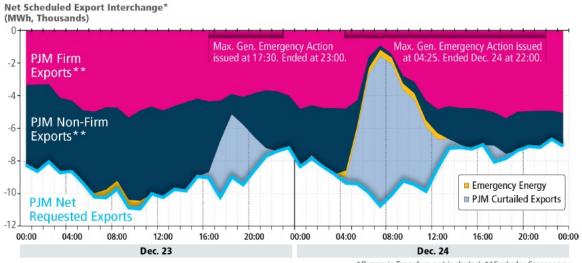

2012 and 2022 Peak Capacity Resource Mix NERC-Wide



NERC-Wide Summer Peak Demand Changes 2012 and 2022

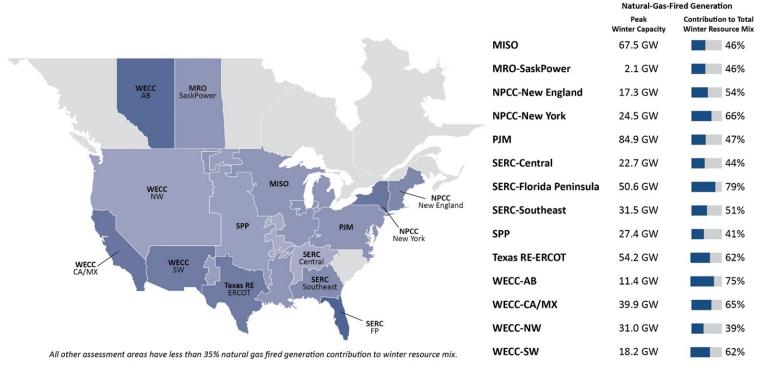
2024-2033 Risk Areas



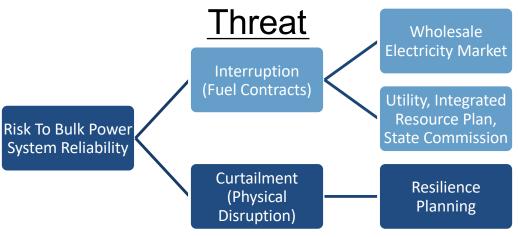


Recent Examples Highlight Need for Wide-Area Energy Assessments

June 6, 2023: ERCOT, SPP, MISO: A "wind drought" caused 60 GW of installed wind capacity to generate 300 MW



December 24, 2022: PJM:


Transmission system during extreme cold weather limited the ability to export to support southern neighbors

Interconnected Natural Gas and Electric Systems: Essential for Winter Reliability

Natural-Gas-Fired Generation Capacity Contributions to 2023–2024 Winter Generation Mix

Solution
Space

Similarities in Past Extreme Cold Weather Events

	2011 Event	2014 Event	2018 Event	2021 Event	2022 Event
Significant levels of incremental unplanned electric generating unit losses with top causes found to be mechanical/electrical, freezing, and fuel issues.	√			√	
Significant natural gas production decreases occurred, with some areas of the country more severely affected.	√			√	✓
Short-range forecasts of peak electricity demands were less than actual demands for some BAs in event area	✓		✓	1	✓

Extreme Winter Events				
Event	Geographic Area	Unavailable Generation (MW)		
February 1–5, 2011	Texas and Southwest	14,702		
January 6-8, 2014 (Polar Vortex)	Midwest, South Central, East Coast	9,800		
January 15-19, 2018	South Central	15,600		
February 8–20, 2021 (Winter Storm Uri)	Texas and South Central	65,622		
December 21–26, 2022 (Winter Storm Elliott)	Central, Midwest, large parts of Southeast and Northeast	90,500		

A Changing Context for the BPS in a Hyper Complex Risk Environment

Must Wins:

- **1. Build more capacity and manage the pace of transformation** through market mechanisms and inter-agency coordination on policies that impact generation.
- 2. Ensure a robust **energy supply chain** for the balancing resources, with sufficient access to fuel and stored energy to withstand long-duration, wide-spread extreme weather events
- 3. Develop sufficient **transmission**, to integrate renewables and distribute them, make the system more resilient
- 4. Maintain a robust fleet of **balancing resources**, with an ability to provide **Essential Reliability Services** to ensure inverter-based resources don't negatively impact reliability
- 5. STATES: Refine resource adequacy requirements that preserves energy assurance

Questions and Answers